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Abstract—Trajectory prediction for surrounding vehicles is
critical for ensuring the safety of autonomous driving. In this pa-
per, we introduce a novel prediction framework named Intention-
Matching Trajectory Prediction (IMTP). Different from existing
results that predict trajectories based on only environmental
information and historical trajectories, the proposed method
initially identifies the possible intentions of surrounding vehicles
based on the environment and generates intention-informed
trajectories based on the physical vehicle model. Historical
trajectories are then used to identify the intention and trajectory
with the highest probability. The proposed framework effectively
integrates the physical vehicle model, road-related environmental
factors, and interactions among surrounding vehicles. A compar-
ative study conducted on a public dataset demonstrates that our
framework enhances both prediction accuracy and robustness.

Index Terms—trajectory prediction, autonomous vehicles

I. INTRODUCTION

Autonomous driving is one of the most exciting areas in the
last decades due to its potential to transform travel modalities
and offer safer, more comfortable, and more efficient jour-
neys [1]. While the integration of lower-level autonomy into
driver-assistance systems has yielded significant progress, the
realization of high-level autonomous driving still presents con-
siderable challenges. One of the major difficulties is accurately
predicting the trajectories of surrounding traffic participants,
which is crucial to enable intelligent downstream decision-
making and planning [2], [3].

Physics-based approaches [4]–[6] employ rules and physical
models [7]. Their prediction accuracy relies on modelling the
behaviour of surrounding vehicles which is generally complex.
In contrast, learning-based approaches [8]–[10] can give accu-
rate intention predictions due to their advantage in modelling
implicit driving behaviour. Nonetheless, due to the absence
of constraints from rules and physical models, learning-based
approaches may generate forecasting trajectories incompliant
with kinematic or environmental characteristics. In recent
years, there has been a growing number of studies combining
the strengths of the two, focusing on more reliable long-term
trajectory predictions [11]–[13].

Experienced human drivers are capable of predicting the
trajectories of surrounding vehicles intuitively and instanta-
neously. During the process, the human driver will initially
analyze the possible intentions of surrounding vehicles based
on their historical trajectories and environment (e.g., lane
connectivity, obstacles and free space), and generate intention-
related trajectories. Then, the driver will continually verify
and update these intentions and trajectories based on new ob-

servations. The process significantly differs from the existing
approach, which predicts trajectories without considering the
intentions of surrounding vehicles.

Inspired by human drivers, this paper proposes a novel
Intention-Matching Trajectory Prediction (IMTP) framework
composed of a physics-based trajectory generator, a learning-
based trajectory matcher, and a Kalman-based intention es-
timator. In this framework, we first identify potential target
states after a few seconds, including target reference paths,
target speeds and etc., based on road connectivity and vehicle
kinematic constraints in the environment. These potential
target states are regarded as intentions. Planning trajectories
are then generated iteratively from the initial moment to the
final moment of historical observation, with each state at the
iterative moment as the start state and the identified target
state as the end state. The observed trajectories between the
planning starting moment and the final moment are matched
with the planned trajectories, resulting in the computation of
probabilities for each trajectory. This iterative process contin-
ues until the final historical observation moment or the present
moment, producing probabilities for all intentions and their
predicted trajectories. Subsequently, a subset of trajectories
with the highest probabilities is chosen as outputs, catering
to specific output requirements. Thus, the intention acts as
an intermediate step to obtain the best predicted trajectory by
matching observable behaviour with implicit intentions.

This framework effectively combines explicit vehicle and
environmental constraints with implicit intentions, enhancing
the reliability of trajectory predictions. Comparative studies,
conducted using the open dataset Argoverse [14], demonstrate
the accuracy and robustness of the proposed approach.

II. PROBLEM FORMULATION

In this section, the problem of trajectory prediction is
formulated and the proposed IMTP framework is introduced.

A. Formulation of Trajectory Prediction

In the context of trajectory prediction, we only consider
a selected target vehicle atar among on-road vehicles A.
For simplicity, all subsequent marks will not be explicitly
denoted as the target vehicle. Let us consider that a self-driving
vehicle is equipped with detection and tracking modules to
measure the states xt of a target vehicle at discrete time
instants t ∈ {t0, t1, · · · , tk} with a constant frequency and
has access to high-definition (HD) map M, where x in-
cludes positions, velocities, accelerations, heading and angular



velocity in 2D and M includes environmental information,
i.e., the boundaries, centerline and traffic direction of drive
lanes. The objective of trajectory prediction in this paper is
to predict multi-modal future trajectories with corresponding
probabilities of the target vehicle Rtk = {(T tk

n ,Ptk
n )|n =

1, 2, · · · , N} from the final observed moment tk subject to
constraints C = CM∪CV , where N is the number of predicted
trajectories, T tk

n = {xt
n|t = tk+1, · · · , tk + τpre} is the nth

predicted trajectory with continuous state information up to
the prediction horizon τpre, Ptk

n is the corresponding trajectory
probability of T tk

n , CM are environmental constraints derived
from HD map, and CV are kinematic constraints of the target
vehicle. We also use X t0 = {xt|t = t0, · · · , tk} to represent
all observed states x from the initial observed moment t0.

B. The Framework of IMTP

Our method chooses a three-stage architecture, as shown
in Fig. 1, which is like a common two-stage architecture
with intermediate results. The framework of IMTP consists
of a physics-based trajectory generator G, a learning-based
trajectory matcher M , and a Kalman-based intention estimator
E.

Fig. 1: The Framework of IMTP

a) Physics-based trajectory generator: we use the gen-
erator G : (X titer , Iti , C) 7→ T titer to produce corresponding
reachable trajectories T titer from X titer to all potential inten-
tions Iti searched out at the moment of intention ti = tk−τhis
in {t0, · · · , tk} in constraints C, where τhis presents a histori-
cal period, titer ∈ {ti, · · · , tk} represents the planning starting
moment at which the current iteration calculation takes place.
At the initial iteration, we search out all potential destinations
from xti by accessing to HD map to get road rules and
other contextual information in CM as intentions Iti . Then,
according to kinematic and environmental constraints in C, we
can generate a reliable trajectory T titer

n from X titer for each
intention Itin ∈ Iti by a physics-based trajectory generator.

b) Learning-based trajectory matcher: the matcher M :
(X titer , T titer ) 7→ P̄titer is employed to evaluate each tra-
jectory T titer

n ∈ T titer generated by G to get corresponding
probability P̄titer

n ∈ P̄titer , where P̄titer presents the match
probabilities produced by a single observation. Notably, this
component is only used to match each potential predicted
trajectory T titer

n = {xt
n|t = titer, · · · , tk, · · · , tk + τpre}

with observed states X titer = {xt|t = titer, · · · , tk} to get
corresponding match probability P̄titer

n , rather than regressing
future motion information {xt|t = tk+1, · · · , tk + τpre} as
most learning-based methods do.

c) Kalman-based intention estimator: the estimator E :
(Ptiter−1 , P̄titer ) 7→ Ptiter takes charge of obtaining the
optimal estimation Ptiter in a temporal sequence by Markov
assumption. This component is optional but it is crucial for
autonomous driving application, as it can improve the consis-
tency of intentions and the accuracy of trajectories, making
system more robust.

III. METHOD

This section details the prediction process of the IMTP
method. The main steps are shown in Algorithm 1.

Algorithm 1: The IMTP method
Inputs : observed states X ti = {xt|t = ti, · · · , tk},

all constraints C = CM ∪ CV
Outputs: multi-modal predicted trajectories with

corresponding probabilities
Rtk = {(T tk

n ,Ptk
n )|n = 1, 2, · · · , N}

1 Preprocessing: search out all potential intentions Iti
by (X ti , C)

2 for titer ← ti to tk do
3 Trajectory Generating:

G : (X titer , Iti , C) 7→ T titer

4 Intention Matching:
M : (X titer , T titer ) 7→ P̄titer

5 if titer == ti then
6 Initialization: Ptiter ← P̄titer ;
7 else
8 Kalman Estimating:

E : (Ptiter−1 , P̄titer ) 7→ Ptiter ;
9 end

10 end
11 Results: update Rtk with (T tk ,Ptk)

A. Preprocessing

As the target agent is uncontrollable and the intention of the
target agent can never be entirely predicted, the preprocessing
step aims to identify all potential target states, referred to as
intentions, from the HD map [15] illustrated in Fig. 2. These
intentions encompass target reference paths and target speeds
for subsequent planning tasks.

Given an assumption that traffic participants will tend to
stay in one lane, and the driving intention will not change in



Fig. 2: An Example of A HD Map. This figure shows a
semantic vector map with useful lane-level detail, such as lane
centerlines, traffic direction, and intersection annotations.

a short period, which is true in most situations, especially on
highways, this preprocessing step (X ti , C) 7→ Iti involves a
heuristic search for potential target lanes with traffic connec-
tivity to the state X ti in the HD map. Furthermore, we can
derive target reference paths by utilizing the centerlines and
their offset lines associated with these potential target lanes.
Finally, an estimation of possible target speeds is made based
on the kinematic constraints CV and the road speed limit from
the HD map CM. After completing these steps, we obtain all
possible target states, constituting the intentions within our
proposed method.

B. Trajectory Generating

In this step, we formulate our trajectory generation as
an optimization problem [16] and solve it by referring the
method mentioned in [17]. After preprocessing, we now have
required inputs of G : (X titer , Iti , C) 7→ T titer to generate all
reachable trajectories for corresponding potential intentions.
Unlike classic physics-based methods [4]–[6], for leaving
enough observations for intention matching, the trajectory
generation does not use the final observed state xtk as the start
state, but the state of the moment before the final observed
moment xtiter |titer ∈ {ti, · · · , tk}.

Fig. 3: Trajectory Generation in A Frenet Frame

According to the trajectory generation method mentioned
in [17], we can generate a kinematic trajectory from a certain

start state to a reference path with a certain end state. In our
method, xtiter is the start state and reference paths are in
different intentions Iti . As shown in Fig. 3, the Frenet frame is
a dynamic curvilinear frame with a tangential vector t⃗r and a
normal vector n⃗r at a certain point r(s) on the lane centerline.
The Cartesian coordinate x⃗(x, y) could be easily converted to
the Frenet coordinate x⃗(s, d), with the relation

x⃗(s(t), d(t)) = r⃗(s(t)) + d(t) · n⃗r(s(t)) (1)

in which r⃗(s(t)) represents a dynamic vector pointing from
the path root, s(t) and d(t) denote the covered arc length and
the perpendicular offset, both on a dynamic frame at time t.

In the prediction problem, we are more concerned about the
lateral movement d(t), but are not sensitive to the longitudinal
movement s(t). Because lateral movement determines the road
selection, longitudinal movement only determines the speed of
vehicle. Meanwhile, considering that human perception obvi-
ously weights lateral and longitudinal changes of acceleration
differently ...

s (t) and we want to fast convergence in a period
of T to reference path dtk+τpre ∼ 0 without collision from
titer to ttk+τpre , we get the cost function of lateral movement

Clat = wj

∫ ttk+τpre

titer

...
s (t)

2
dt+ wtT + wddtk+τpre

2 (2)

with weight coefficients wj , wt, wd > 0.
In the longitudinal movement, we ignore some high-order

state variables and get the cost function

Clon = wj

∫ ttk+τpre

titer

...
s (t)

2
dt

+ wtT + wv(ṡtk+τpre − ṡtar)
2

(3)

with weight coefficients wj , wt, wv > 0.
In equation (2) and (3), there are also some constraints

including the start state, process constraints and kine-
matic constraints that need to be satisfied. The start state
[siter, ṡiter, s̈iter, diter, ḋiter, d̈iter] can be easily gained from
observation. Due to the inaccuracy of the observation, the
higher order can be set zero as [siter, ṡiter, 0, diter, ḋiter, 0].
For process constraints, we set target velocity ṡtar to the
minimum of a guessed speed and road speed limit from HD
map and leave star unconstrained.

ṡ ∈ [0, ṡtar] (4)

For kinematic constraints, we have

α ∈ [−αmax, αmax] (5)

κ ∈ [0, κmax] (6)

where the maximum value αmax for acceleration α and κmax

for curvature κ are control parameters of vehicles set by us.

C. Intention Matching

As we have obtained all trajectories T titer to potential
intentions Iti from a moment titer in the past, we can confirm
the potential intention Itin by matching each corresponding
predicted trajectory from calculation starting moment to the
final observed moment {xt

n|t = titer, · · · , tk} ∈ T titer



with observed states X titer = {xt|t = titer, · · · , tk} to get
corresponding match probability P̄titer

n .
The matching problem is a typical classification problem. In

recent years, with the rapid development of machine learning
methods, the design of classifiers suitable for different data and
targets is changing rapidly. Considering that this paper focuses
on the novel framework proposed, we choose the classical
classifier Support Vector Machine (SVM) to implement it [18].
In terms of data preparation, we use delta data between the
predicted trajectory and the observed trajectory to calculate
feature vectors so as to improve the representativeness of
features, thus ensuring data consistency. The specific data
include delta time, delta heading angle, delta velocity and
offset of their position which are all sampled at the same
timestamp.

In the training dataset, we use the same method to obtain the
data feature vector, but calculate endpoint error with ground
truth directly, so as to label “the matched” for those errors
lower than a threshold, and others mark as “the unmatched”.
In the testing dataset, we use the trained model to obtain its
matching probability according to the calculated feature vector.

D. Kalman Estimating

Given the predicted probability of intentions and their
trajectories P̄titer by intention matching at titer, we can use
the Kalman-based estimator E : (Ptiter−1 , P̄titer ) 7→ Ptiter

to obtain optimal probability estimation at titer by Markov
assumption.

In Kalman optimal estimation iterations, we choose the
vector Ptiter of probabilities of N predicted trajectories as
state. Assume Ptiter follows a normal distribution, then we
can get the optimal probability estimate at tk by recursion
from ti.

Ptiter = (1−Ktiter
gain)P

titer−1 +Ktiter
gainP̄

titer (7)

where Ktiter
gain is the Kalman gain in iterations, a value between

[0, 1] in our case.
The downstream planning task is able to use its correspond-

ing intention and trajectory according to the probability.

IV. EXPERIMENTS AND RESULTS

In this section, the dataset used in the experiment, the
evaluation methods, and the final comparison results will
be presented to demonstrate the advantages of the proposed
method in accuracy and robustness.

A. Dataset

The Argoverse Motion Forecasting dataset [14] is one of
the largest benchmarks for trajectory prediction, including
327,790 sequences of interesting scenarios. Each sequence
follows the trajectory of the main agent for 5 seconds while
keeping track of all other actors (e.g. car, pedestrian). Each 5-
second sequence contains the centred locations of each tracked
agent sampled at 10 Hz, in which one vehicle with relatively
complex motion is marked as the prediction target. The reason
for choosing this dataset is that Argoverse includes HD maps

with 290 km of mapped lanes with geometric and semantic
metadata which provides us with essential information for
identifying intentions. In our experiment, the 5-second trajec-
tory is split into the first 2 seconds for observation and the
last 3 seconds for verifying prediction. Considering that the
IMTP method needs to achieve optimal estimation through
Kalman iteration, we will iterate from the first frame of 2-
second observation data to the 20th frame to identify the final
trajectory.

B. Evaluation Method

Prediction is a very difficult task, so for the safety of
autonomous driving, multiple possible prediction trajectories
are more important than the single most likely one. Our
method can generate multi-modal future trajectories, so in the
evaluation, we use the descending order of the probability of
predicted trajectories to sort and evaluate the accuracy of the
best K predicted trajectories, where K = 1, 3, 6 in Argoverse.

We follow the evaluation criteria in the dataset to perform
a comparable analysis of the results. Minimum Average Dis-
placement Error (minADE) and Minimum Final Displacement
Error (minFDE) of best K = 1, 3, 6 predicted trajectory are
used to evaluate how good is the best. The minADE is the
average L2 distance error of the best predicted trajectory.
The minFDE is the L2 distance error of the best predicted
trajectory at the final timestamp. Notably, the best predicted
trajectory refers to the predicted trajectory with the minimum
endpoint error. In other words, minADE refers to Average
Displacement Error (ADE) of the trajectory which has min-
imum Final Displacement Error (FDE), and not minimum
ADE, since we want to evaluate the single best forecast. Miss
Rate (MR) is the ratio of scenarios that none of K predicted
trajectories has less than 2 meters L2 FDE. So we can see
that the minFDE and the minADE are used to evaluate the
accuracy of the trajectory prediction, while the MR is used to
evaluate the robustness of the trajectory prediction.

C. Results

Comparing our IMTP method with the baseline provided by
the Argoverse dataset, the TABLE I demonstrates a distinct
advantage. In contrast to three methods used in the database
baseline—Constant Velocity (CV) [4], Nearest Neighbor (NN)
with map [19], and Long Short-term Memory (LSTM) with
map [20]—our method consistently produces accurate multi-
modal predictions across diverse scenarios. Notably, the MR
significantly outperforms the baseline, highlighting the robust-
ness of our approach.

Fig. 4 showcases various trajectory prediction scenarios,
such as lane changing and shunting, where our method ac-
curately identifies possible intentions, ultimately converging
towards the target direction and providing precisely predicted
trajectories.

However, the MR suggests that there is still room for
improvement when deploying our framework in a real au-
tonomous driving system, considering that intentions in real
scenarios may deviate from our assumptions.



TABLE I: Comparison with the Argoverse Baselines

Methods
K = 1 K = 3 K = 6

minADE (m) minFDE (m) MR minADE (m) minFDE (m) MR minADE (m) minFDE (m) MR

Argo-CV 3.53 7.89 0.83 - - - - - -

Argo-NN+map 3.65 8.12 0.94 3.01 6.43 0.80 2.6 5.32 0.75

Argo-LSTM+map 2.92 6.45 0.75 2.31 4.85 0.71 2.08 4.19 0.67

IMTP (ours) 1.71 2.85 0.30 1.65 2.70 0.28 1.63 2.65 0.27

(a) the initial 269 guesses (b) the initial 188 guesses (c) the initial 130 guesses (d) the initial 168 guesses

(e) the best 6 candidates in (a) (f) the best 6 candidates in (b) (g) the best 6 candidates in (c) (h) the best 6 candidates in (d)

Fig. 4: Results of Typical Scenes. The initial guesses and final predicted trajectories of the same scene are displayed in a top-
down manner. The first row shows the search results of all potential intentions. Red represents the real trajectory. Blue represents
all possible intentions and their trajectories. The final output result is shown in the second row. The orange trajectory represents
the observed 2s. Red represents ground truth for the next 3 seconds and blue represents the multiple predicted trajectories
for those 3s. In both the upper and lower rows, the dark grey line represents the lane center line, while the light grey line
represents the reference path in the first row and the lane boundary line in the second row.

V. CONCLUSIONS AND FUTURE WORKS

We propose a prediction framework, IMTP, which uses a
physics-based trajectory generator to generate vehicle trajec-
tories according to potential intentions, and then matches and
selects intentions based on existing observations. The IMTP
guarantees the feasibility of trajectories by utilizing a physics-
based trajectory generator to generate future trajectories under
explicit constraints. Meanwhile, a learning-based matcher is
used to capture implicit interactions among traffic participants
and gives probabilities of each intention. It makes more
robust predictions by using a Kalman-based estimator to keep
updating the probability and filter out the best future trajectory.
The proposed framework effectively integrates the physical

vehicle model, road-related environmental factors, and the
interactions of the surrounding vehicles. With its novel frame-
work design, the IMTP outperforms existing technologies in
terms of prediction accuracy, feasibility and robustness. In
addition, this framework is particularly suited for closed road
scenarios like highways, benefiting from clear lane markings
and a single type of traffic participant, thereby enhancing
the system’s ability to respond promptly to obstacles, avoid
collisions, and improve overall comfort.

While this work presents the prediction of vehicle intentions
and trajectories, the specific method heavily relies on HD
map to determine intentions. Nevertheless, the core idea of
the proposed method can be applied to any agent trajec-



tory prediction where potential intentions can be identified.
Furthermore, because this paper focuses on demonstrating
the new framework IMTP, there is still a lot of room for
enhancing the design of the learning-based matcher, which
could significantly improve the prediction effectiveness and
broaden its applicability in specific domains. All these ongoing
advancements will further refine the concepts presented in this
framework and enable better prediction outcomes, ultimately
increasing its versatility across various applications.
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